

Cross Validation

Generally: Cross Validation (CV)

Set of **validation techniques** that use the training dataset itself to validate model

- Allows maximum allocation of training data from original dataset
- Efficient due to advances in processing power

Cross validation is used to test the effectiveness of any model or its modified forms.

Validation Goal

- Estimate Expected Prediction Error
- Best Fit model
- Make sure that the model does not Overfit

Hastie et al. "Elements of Statistical Learning."

HoldOut Validation

Dataset

HoldOut Validation

Training Sample

Testing Sample

HoldOut Validation

Training Sample

Testing Sample

Advantage: Traditional and Easy Disadvantage: Varying Error based on how to sample testing

Often used in practice with *k*=5 or *k*=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error

Dataset

Suppose K = 10, 10-Fold CV

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Training Sample | Training Sample | Testing Sample |

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Training Sample | Training Sample | Testing Sample |

Calculate RMSE = rmse1

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Training Sample | Testing Sample | Training Sample |

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Training Sample | Testing Sample | Training Sample |

Calculate RMSE = rmse2

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Testing Sample | Training Sample | Training Sample |

| Training Sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Training Sample | Training Sample | Testing Sample | Training Sample | Training Sample |

Calculate RMSE = rmse3

And so on

Testing Sample	Training Sample	Training Sample	Training Sample	Training Sample
Training Sample				

Calculate RMSE = rmse10

Testing Sample	Training Sample	Training Sample	Training Sample	Training Sample
Training Sample				

RMSE = Avg(rmse1...10)

Less matters how we divide up

Selection bias not present

Dataset

Training Sample

What just happened?

Training Sample

Testing Sample

Leave-P-Out Validation

For each data point:

- Leave out p data points and train learner on the rest of the data.
- Compute the test error for the p data points.

Define average of these _nC_p error values as validation error

Leave-P-Out Validation

A really exhaustive and thorough way to validate

High Computation Time

Question:

What's the difference between 10-fold and leave-5-out given dataset n=50?

Your problem set: Final Project

Next week: Ensemble

Meta-Learning

Layers of Learning

Gilberto Titericz Junior (top-ranked user on <u>Kaggle.com</u>) used this setup to win the \$10,000 Otto Group Product Classification Challenge.

Introduction: Ensemble Averaging

Basic ensemble composed of a **committee** of learning algorithms.

Results from each algorithm are averaged into a final result, reducing variance.

Logit	SVM	KNN	Majority Voting	Actual
А	A	В		А
В	A	В		В
A	A	А		Α
A	В	В		В

Logit	SVM	KNN	Majority Voting	Actual
А	А	В	А	A
В	A	В		В
A	A	A		A
A	В	В		В

Logit	SVM	KNN	Majority Voting	Actual
А	А	В	А	А
В	А	В	В	В
A	A	A		A
A	В	В		В

Logit	SVM	KNN	Majority Voting	Actual
А	A	В	А	А
В	А	В	В	В
А	A	А	А	A
A	В	В		В

Logit	SVM	KNN	Majority Voting	Actual
А	A	В	А	A
В	А	В	В	В
А	А	А	A	A
А	В	В	В	В

Ensemble

Meta-Learning

Ensembles and Hypotheses

- Recall the definition of "hypothesis."
- Machine learning algorithms search the **hypothesis space** for hypotheses.
 - Set of mathematical functions on real numbers
 - Set of possible classification boundaries in feature space
- More searchers → more likely to find a "good" hypothesis

General Definition

One Hypothesis

One Hypothesis

One Hypothesis

One Strong Hypothesis

One Hypothesis

Why so many models?

A single model on its own is often prone to bias and/or variance.

- **Bias** Systematic or "consistent" error. Associated with underfitting.
- **Variance** Random or "deviating" error. Associated with overfitting.

A tradeoff exists. We want to minimize both as much as we can.

Three Main Types

Three Main Types

Bagging

Short for **b**ootstrap **<u>agg</u>**regat<u>ing</u>.

A **parallel ensemble**. Models are applied without knowledge of each other.

- Apply each model on a random subset of data.
- Combine the output by averaging (for regression) or by majority vote (for classification)
- A more sophisticated version of ensemble averaging.

Bagging decreases variance and prevents overfitting.

Random Forests

Designed to improve accuracy over CART. Much more difficult to overfit

- Works by building a large number of CART trees
 - Each tree in the forest "votes" on outcome
 - Outcome with the most votes becomes our prediction

Boosting

A **sequential ensemble**. Models are applied one-by-one based on how previous models have done.

- Apply a model on a subset of data.
- Check to see where the model has badly classified data.
- Apply another model on a new subset of data, giving preference to data badly classified by the model.

Boosting decreases bias and prevents underfitting.

Weak Learners

Important concept in boosting.

Weak learners do only slightly better than the baseline for a given dataset. In isolation, they are not very useful.

While boosting, we improve these learners sequentially to create hyper-powered models.

Short for **<u>ada</u>**ptive **<u>boost</u>**ing. Sequentially generates weak learners, adjusting newer learners based on mistakes of older learners

Combines output of all learners into weighted sum

 $H(x) = sign(\alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x))$

D3

XGBoost

Short for e<u>X</u>treme <u>G</u>radient <u>Boost</u>ing. Sequentially generates weak learners like AdaBoost

- Updates model by computing cost function
 - Computes gradient of cost function
 - Direction of greatest decrease = negative of gradient
 - Creates new learner with parameters adjusted in this direction

Stacking

Stacking

Stacking

Stacking pt. 1

Assumption: can improve performance by taking a **weighted average** of the predictions of models.

- Take a bunch of machine learning models.
- Apply these models on subsets of your data (how you choose them is up to you).
- Obtain predictions from each of the models.

Stacking pt. 2

Once we have predictions from each individual model...

- Perform Top-Layer-ML on the predictions.
 - This gives you the coefficients of the weighted average.
- Result: a massive blend of potentially hundreds of models.

CDS Core Team Example: Stacking

CDS Kaggle Team (2017 March Madness Kaggle competition)

- Each member of the Kaggle team made a logistic regression model based on different features
- Combined these using a stacked model

Your problem set: Final Project

Next week: Thank you all!

Random Forest Parameters

- Minimum number of observations in a branch
 - o min_samples_split parameter
 - Smaller the node size, more branches, longer the computation
- Number of trees
 - o n_estimators parameter
 - Fewer trees means *less accurate* prediction
 - More trees means *longer computation* time
 - Diminishing returns after a couple hundred trees

